TyphonML: a Modeling Environment to Develop
Hybrid Polystores

Francesco Basciani, Juri Di Rocco, Davide Di

Ruscio, Alfonso Pierantonio
University of L’Aquila
L’Aquila, Italy
{firstname.lastname}@univagq.it

ABSTRACT

Designing and deploying a hybrid data persistence architecture
that involves a combination of relational and NoSQL databases is a
complex, technically challenging, and error-prone task. In this tool
paper, we propose TyphonML, a modeling language and supporting
environment, which permits modelers to specify data that need
to be persisted in hybrid architectures, by abstracting over the
specificities of the underlying technologies. The language enables
the specification of both conceptual entities and available data layer
technologies, and then how the modeled entities have to be mapped
to the available database systems. TyphonML models are used to
generate microservice-based infrastructures, which permit users
to interact with the designed hybrid polystores at the conceptual
level. In this tool paper, we show the different components of the
TyphonML environment at work through a demonstration scenario.

CCS CONCEPTS

- Software and its engineering — Model-driven software en-
gineering; Software system models; Software system struc-
tures; Software organization and properties.

KEYWORDS
Hybrid Polystore, Data Modelling, Tools, Database Technologies.

ACKNOWLEDGMENTS

This work is funded by the European Union Horizon 2020 research
and innovation programme through the Polyglot and Hybrid Per-
sistence Architectures for Big Data Analytics (TYPHON) project
(#780251).

1 INTRODUCTION

Relational database management systems (RDBMS) have become
over the years the predominant choice for storing large volumes of
data. As such, various techniques and tools have been developed
to support their design and development. In recent years, NoSQL
databases have emerged as an alternative approach to data storage
thanks to their horizontal scalability and flexibility, even though
NoSQL databases still remain far from the level of maturity of rela-
tional databases. To balance requirements for data consistency and
availability, organisations increasingly migrate towards hybrid data
persistence architectures comprising both relational and NoSQL
databases for managing different subsets of their data. Designing
and deploying such hybrid data stores (hereafter referred as poly-
stores for conciseness) is a complex, technically challenging and
error-prone task. Differently from relational databases which can be

Ludovico Iovino
Gran Sasso Science Institute
L’Aquila, Italy
ludovico.iovino@gssi.it

accessed by means of standard application programming interfaces
(APIs) such as JDBC/ODBC and by relying on the support for SQL,
each NoSQL technology provides developers with its own propri-
etary API and query language, with a consequent high coupling
between the employed databases and the developed applications.

The TYPHON EU H2020 project! aims at conceiving an industry-
validated methodology and integrated technology offering for de-
signing, developing, querying, evolving, analysing and monitoring
architectures for scalable polystores. In the context of the TYPHON
project, the TyphonML language has been developed to permit
engineers to model in a homogeneous manner polystores, by ab-
stracting over the specificities of the underlying technologies. Both
textual and graphical editors have been developed to support the
specification of TyphonML models. Moreover, ready-to-use APIs
are automatically generated from input TyphonML specifications
so that developers are able to perform CRUD (create, read, update
and delete) operations on hybrid polystores in a homogeneous
manner without the need of directly interacting with the low level
infrastructures. To this end a microservice architecture is generated
enriched with an OpenAPI? specification allowing both humans and
machines to transparently interact with the polystore. TyphonML
has been developed by exploiting mature Eclipse technologies, in-
cluding EMF, Sirius, XText, OCL, and Acceleo.

Structure of the Paper: Section 2 motivates the work and makes
and overview of the related background. Section 3 presents the
TyphonML language and the supporting development environment.
Conclusion and future work are presented in Section 4.

A video demonstration of the TyphonML tool is available at
https://bit.ly/typhonml-models-tools — The source code of the tool
is available at https://github.com/typhon-project/typhonml

2 BACKGROUND AND MOTIVATION

Figure 1 shows a motivating e-commerce application borrowed
from [10]. The depicted system relies on different kinds of database
systems: a graph database is employed to support product analysis,
document database for managing user reviews and comments, re-
lational database for orders and payments, products, and finally a
key-value technology for storing product images. A search engine
is also available for managing products, reviews and comments.
Figure 1 shows an explanatory case based on the adoption of a
hybrid data persistence architecture for managing the data of the

!https://www.typhon-project.org/
2https://www.openapis.org/

https://bit.ly/typhonml-models-tools
https://github.com/typhon-project/typhonml
https://www.openapis.org/

e e-Commerce system

fﬂ 24
Graph Eﬁ Document oﬁ Relational
database TR N database database

Users, Orders and
Payments

Key-value
Store

Products images

Reviews and Comments

Search @
Englne

Products, Reviews and comments

Product Analytics

Entity ‘ []

Figure 1: eCommerce running example

same software system. Designing and implementing such architec-
tures can be technically challenging and error-prone. For instance,
standardized notations and supporting tools for designing NoSQL
databases are not available. While there is some work towards this
direction, the proposed solutions are technology-specific and not
applicable across different and hybrid datasets [1].

Over the last years, several approaches have been proposed to
support the development of systems similar to that shown in Fig. 1.
In [4, 7], the authors present BigDAWG, a polystore system designed
to work with different data models and storage engines grouped in
islands. It includes a middleware to support the multiple islands,
programming languages and query types that BigDAWG supports.
Moreover, BigDAWG provides an APl interface to execute polystore
queries. AWESOME [3] is a polystore-based system to support
social data analytics. Social data coming from different sources (e.g.,
DBPedia, Twitter, etc) are ingested from the polystore to enable data
analytics. In [12], the authors propose a methodological approach
to analyze the requirements of data warehouse systems. In [5] EI
Mohajir et al. present a framework to design a data warehouse
project by concurrently taking into account both functional and the
non-functional requirements. ORESTES is a tool presented in [8]
to provide REST/HTTP access to object-oriented databases. In [14],
Digree has been proposed as a middleware to handle graph pattern
matching queries over distributed or inter-linked graph databases. It
orchestrates the query decomposition into a set of smaller patterns
that are executed in parallel over all database partitions.

Even though several techniques and tools have been done in
the direction of supporting the design and development of hybrid
storage systems, a satisfactory solution is still missing: the exist-
ing approaches do not focus on the separation of conceptual and
storage concepts. Moreover, existing tools do not provide proper
abstractions from technological aspects and in most of the cases a
centralized data layer for accessing data among different technolo-
gies is still not supported.

In the next section, we propose TyphonML, a tool-supported
modeling language to specify conceptual entities and map them to
different storage engines. Then, a microservice-based data layer is
automatically generated to permit the interaction with the poly-
store in a homogenous and transparent manner from the adopted

Basciani et al.

database technologies. Developers interact with the polystore at
the conceptual level, without the need of being aware of how the
data entities of interest are stored.

2.1 Typhon H2020 EU project

TyphonML is a component of the Typhon EU project. This project
aims at conceiving an integrated technology offering for designing,
developing, querying, evolving, analysing and monitoring archi-
tectures for scalable polystores. In the following we briefly present
the other components of Typhon project:

- The TyphonDL component provides a language for mod-
eling hybrid polystore deployments. It enhances the Ty-
phonML models with deployment settings (e.g., security
settings, docker configurations, etc.). Then, it generates in-
stallation and configuration scripts to deploy the persistence
infrastructure.

The TyphonQL component provides a unified language for

querying data in polystores. It includes many features as the

compilation to native querying facilities, the static analysis,
and the lazy loading and prefetching mechanisms.

- The Typhon Monitoring and Analytics component records
data access, update events and data events in a distributed
ledger. Then, it uses these data to facilitate subscription-
based data analytics and text mining pipelines.

- The Typhon Evolution component supports schema evolu-
tions, internal data migrations, and query migration tools.
Moreover, it uses usage monitoring data to recommend pos-
sible evolution schemata.

3 THE TYPHONML ENVIRONMENT

The architecture of the developed environment is presented in
Section 3.1. Both the TyphonML textual and graphical editors are
presented in Section 3.2. To support the specification of TyphonML
models and provide the modelers with early feedback, specific
validators and recommenders are available as discussed in Section
3.3. The generation of the data access layer based on a micro-service
architecture is presented in Section 3.4.

3.1 Architecture

The overall architecture of the TyphonML environment is shown
in Fig. 2: white boxes (i.e., EMF, Xtext, Epsilon, Sirius, and Acceleo)
represent the technologies that have been used; dark-grey boxes
depict the software components the modeler interact directly with;
light-grey boxes present inner software components that support
the functionalities provided to the user via the editors and the data
access layer.

The TyphonML metamodel (labeled with (D in Fig. 2) plays a key
role in the overall architecture. It contains the modeling constructs
enabling the specification of the data types and conceptual enti-
ties of the information system being modeled. Once modeled, data
entities can be then mapped to specific databases also modeled by
means of the same language. A fragment of the the TyphonML meta-
model is shown in Fig. 3. A TyphonML model mainly consists of
DataType and Database elements. DataType instances represent
all the (primitive and compound) data types that are used by the sys-
tem under development. A particular kind of datatype is represented
by Entity that permits to specify the conceptual entities involved

TyphonML: a Modeling Environment to Develop
Hybrid Polystores

in the information system under development. Each entity is in
turn defined by means of structural features, i.e., Attributes and
Relations. Attribute elements can typed as primitive, custom,
or even as a modeled Entity. Relations are named elements rep-
resenting relationships among different entities including the corre-
sponding cardinality, which can be zero_one, one, zero_many,
or one_many. Bidirectional references can be specified by using
the opposite reference between the Relation instances. Finally,
isContainment is a boolean attribute, which permits to specify if
the target entity is contained (e.g., to trigger cascade-deletions) or
not in the entity being modeled.

Database is an abstract concept, which is specialized in or-
der to specifically represent different kinds of database systems.
The currently supported subtypes are RelationalDB, DocumentDB,
KeyValueDB, ColumnDB, and GraphDB. For the sake of brevity, only
RelationalDB, and DocumentDB are detailed in the following.

RelationalDB allows to define which entity should be stored in
a relational database, instantiating a mapping. To this end, mod-
elers will define the Tables that are needed to store the entity of
interests. Table contains the reference to the entity that needs
to be stored in the relational database being specified. Similarly,
document based databases are used to store collections of hetero-
geneous elements. The DocumentDB metaclass consists of the ref-
erence collections to group documents that are stored in the
database. Each Collection is devoted to store the data of the re-
ferred conceptual data entity. The metamodel presented above
has been implemented as an Ecore model on top of the EMF plat-
form [2].

3.2 Textual and Graphical Editors

The TyphonML textual editor has been developed by means of
Xtext?, which is an Eclipse project for developing domain-specific
languages. Starting from the specification of the grammar (see 2)
in Fig. 2), the Xtext framework supports the implementation of a
full infrastructure, including parser, linker, type-checker, compiler
as well as editing support for Eclipse. Figure 4(a) shows the textual
specification of a TyphonML model representing the explanatory
e-commerce system introduced in Section 2. For instance, the con-
ceptual entity User specified on the left-hand side of Fig. 4(a) is

3https://www.eclipse.org/Xtext/

/ / /

! < .

Textual editor Data Layer

Graphical editor

@] @ © ©

Z?(Sirius Q Aeceleo

Xtext | <&

- ()

Figure 2: General View of the presented tool

E DataTypeitem (0.1] elements B CustomDataType

(0..1] type
E PrimitiveDataType
‘ % DataType |<t

[0..1] type’
[0.*] relations

£ Relation

[0.] dataTypes

H Model (0.1] opposte

[0.") databases < carginallty : Cardinality

= IsContalnment : EBoolean

‘ % Database

.11 tme {0.) atributes

T [Attribute
[{ RelationalDB 1 [5] Ducumenma}
{ J { Cardinality
— zero_one
1(0:) tables [0.7] callections I .
" ~ zero_many
[B Table 1 [g Collection 1 -

1 | I o e

[0..1] entity

Figure 3: An excerpt of the TyphonML metamodel

mapped on the table UserDB of the relational database Inventory.
The other conceptual entities have been also mapped to the differ-
ent available database types, e.g., the Review entity is mapped to a
document database named Reviews. Such data mappings are made
more explicit in the graphical editor shown in Figure 4(b).

The TyphonML graphical editor has been developed by means
of Sirius®. Sirius is an Eclipse project that enables the development
of graphical modeling environments by leveraging well-established
technologies. Starting from a metamodel, it allows a model-based
specification of visual concrete syntax organized in viewpoints
(pointed with (3), i.e., models that can be authored by means of dif-
ferent notations that suit the needs of various stakeholders. Thanks
to the Sirius and Xtext integration, graphical and textual editors are
both synchronized. In this way, stakeholders with different skills
can define TyphonML models using different syntaxes [6].

3.3 TyphonML validators and recommenders

In database systems, the possible violation of recommended best
practices might potentially affect negatively the quality of the sys-
tem being developed. Thus, early detection of potential issues while
specifying database schemas could help developers enhance quality
aspects of the model system [13]. In TyphonML a quality assur-
ance checker has been integrated, in which models are analyzed
by a set of checks, each devoted to the discovery of possible issues.
The conceived analysis tools have been developed by relying on
Epsilon Object Language (EOL)’ [9] and Epsilon Validation Lan-
guage (EVL)® provided by the Epsilon platform. EOL is an impera-
tive programming language for creating, querying, and modifying
EMF models, while EVL is a validation language built on top of
EOL providing a number of features such as support for detailed
user feedback, constraint dependency management, semi-automatic
transactional inconsistency resolution. According to the work pre-
sented in [13], we defined a set of model validators (4) in Figure 2)
working at Schema, and Data levels. An example of issue occurring

“https://eclipse.org/sirius/
Shttps://www.eclipse.org/epsilon/doc/eol/
®https://www.eclipse.org/epsilon/doc/evl/

https://www.eclipse.org/Xtext/
https://eclipse.org/sirius/
https://www.eclipse.org/epsilon/doc/eol/
https://www.eclipse.org/epsilon/doc/evl/

ecommerce.tml &2

= entity Review] {
content : te: xl

|=| neodj.tml 28
< griphdb Neuﬂj {

location: poil e edgp Concordance {
product —> Pmduct[l] from source
, user —> User[1] R to target
e !nuly Product { }

ame ; string[256] 3
descnutlon : string[
price : int .
urun:c?gn?ase : date . |=/ mysgl.tml &2

availabilityl Egmn polygon :

reviews :-> Review."Review.product”[8..%] S "“:1:{‘5“5’ Inventory {
tags — Tagld. t] . a :“1!{
inventory :-> It!m[ﬂ. .¥] UserDB : User

category —> Category[1] e index UserNameIndex {

}
= entity Categor
id: str%ng%“]

name: string[32] = %ih‘l! {

= antity Ttes { ProductDB : Product
shelf: in table { TagDB: Tag }
N table { TtemDB: Item }

t
product —> Product."Product. inventory” [1]

= entity Tag { }
name: string[64]

= entity User { -
name : string[256] =
address: string[256]
billing: address
location: point User
gEgEgEEkL s:g:gg[}:gt]] userkey - ("User.photoURL",
biography :-> Emg_r;phy "Biography.user” (6..1] VUser. avatariRL")
reviews —> Review."Review.user" [8..x] }

}

keyvalue.tm| &
= keyvaluedb Stuff {
elements {

= entity Biography {
ntent : string(256]

user —= User."User.biography" [1] |= mongedb.tml £2
= documentdb Reviews {
S antity Concordance { ptveleey

Review : Review
Biography : Biography

source —> Product[1] Category: Categery

target —> Product[1]

}
(a) TyphonML textual editor

attributes (name, location)

Basciani et al.

@, €, 100% n = i Palette
hAQL - -
(= Entity

4 Entity
----- <4 Attribute

EE E] -

‘ User: Entity L

PhOtOURL : string billing : address

< Functional Tag

location : peint I N < Relation
avatarUAL : string address : string name : string I

<4 NFunctional Tag

(= RelationDB
4 RelationalDB

user|one
Teviews zero_many Concordance : Entity

Review : Entity < Table2Entity
welght : int
content : text + Table
22 IdSpec
focation : point
H (= DocumentDB
nodeweight| | .
N H < DocumentDbB
L H .
Tag : Entity Item : Entity GraphDB 5 ! 4 Collection
T il 4 Collection2Entity
name : string shelf :int nodewelght E (= KeyValueDB
ledgeweight ! (> GraphDB
x) . + GraphDB
'

< GraphNode
| Inventoty -

<4 Entity2GraphNode

- '
TagDB ItemDB ProductD8 UserDB ‘ : % GraphEdge
Indexspec i ' b
Fp---t

< Edge2DataType
L= ColumnDB
[» DataTypeSection

(b) TyphonML Graphical editor

Figure 4: TyphonML editors.

at the schema level is when containment relations are specified
between conceptual entities that are mapped to relational databases.
Even though this is technically possible, containments in relational
databases should be avoided, and for performance purposes this
kind of relations should be managed by means of NoSQL databases
e.g., document databases. An example of issue occurring at data
level is when 'O’ (letter) is used instead of 0’ (zero number). When
potential issues are identified, possible fixes are recommended di-
rectly in the TyphonML environment and the modeler can decide
to accept them and thus change the model accordingly.

3.4 Generation of the Data Access Layer

Once the TyphonML specification is completed and validated as
previously discussed, a synthesis tool is applied to generate the
polystore data access layer. A client applications can use it as an
intermediate layer to transparently interact with the underlying
database systems instead of directly working with each of them. For
instance, by considering the TyphonML model of the explanatory
example shown in Fig. 4, the data access layer shown in Fig. 5 is
generated. In particular, each modeled database system induces the
creation of a corresponding microservice [11], which is responsible
of managing all the conceptual entities that have been assigned to
that database system. The architecture consists of a Client Library
that can be used by the developers to interact with the interfaces
exposed by the API Gateway. The API Gateway is the service aware
of "where" all the services managing the conceptual entities are
deployed, and thus it is aware of where the client requests have
to be dispatched. The system is also able to manage relationships
occurring among entities stored in different database systems, and
thus managed by different microservices. For instance, as shown in
Fig. 5, the Product entity is mapped to a dedicated microservice
managing the data with a graph database, i.e., Neo4], the User entity

|

‘ 6 AP Gateway ‘
| |] |

‘ Product ‘ ‘ Review ‘ ‘ ‘ ‘ User ‘
Graph Document Relational
database database database
@neoqj My B

mongoDB

Figure 5: Example of generated microservice-based data ac-
cess layer

instead is instead managed by a relation database as specified in the
model in Figure4. The generation of the data access layer from an
input TyphonML model, is managed by a set of coordinated Acceleo-
based” model-to-code transformations (see (5) in Figure 2). The
generated microservice architecture comes with an automatically
produced OpenAPI specification for describing, consuming, and
visualizing the corresponding RESTful web services. It allows both
humans and machines to interact with the polystore. Figure 6 shows
the generated OpenAPI specification of the explanatory example
shown by means of Swagger UI®. The generated API consists of all
the resources and operations that can be invoked, i.e., the CRUD
operations GET, POST, DELETE, and PATCH.

https://www.eclipse.org/acceleo/
8https://swagger.io/tools/swagger-ui/

https://www.eclipse.org/acceleo/
https://swagger.io/tools/swagger-ui/

e v

TyphonML: a Modeling Environment to Develop
Hybrid Polystores

honML - Generated data layer ®

‘Generated Api Documentation

Review-rest-controller s e Conoler .

r——
Product-rest-controller P e Corioter N
Category-rest-controller Caisgu e Conioter S

Item-rest-controller renF:

Tag-rest-controller 7 res:

User-rest-controller use
Biography-rest-controller sy festcaricter N

C t-controll N

Figure 6: Generated microservice-based architecture for the
Polystore API

The generated data access layer, including the RESTful web ser-
vices, can be programmatically used as shown in Listing 1, which
defines an explanatory method testReviewFindAll that uses the
Client Library to retrieve and aggregate data coming from different
storage sources. By referring to the motivation example, the entity
Review is mapped on a document database. Moreover such an entity
has two references, i.e., Product and User, that are both mapped to
a relational database. The provided service ReviewService inter-
acts with the API Gateway to aggregate data coming from different
sources. Line 2 instantiates the service reviewService objects with
the URL of the API Gateway, the line 3 performs the query on the
polystore. Finally, the contained objects, such as product, are de-
ferred the initialization until they are really needed in line 6.

public void testReviewFindAll() {
ReviewService reviewService = new ReviewService("http://localhost:8080");
PagedResources<Review> reviews = reviewService.findAl1(1,5,"ASC");
reviews. forEach(review ->
review.getProductObj (). forEach(product ->
System.out.println(product.getName() + " : "
)5

+ product.getDescription()))

}

Listing 1: An explanatory use of the generated data access
layer

4 CONCLUSIONS

Designing and deploying hybrid data persistence architectures that
involve combination of different databases is a complex, and error-
prone task. In this paper we proposed TyphonML , a technical infras-
tructure for designing hybrid polystores and interact with them in
a homogenous manner. TyphonML allows the design of conceptual
entities and map them to different database systems by means of a
textual and a graphical environment. TyphonML permits developers
to interact with the modeled data at the conceptual level by relying
on a data access layer, which is based on a generated microservice-
based architecture. Future developments include the support for
evolution and migration scenarios. In particular, starting from an
existing and already deployed TyphonML model, modelers might
have the need of operating conceptual and logical changes to the
managed data. To this end, we are planning to add a predefined set

of change operators supported by an evolution editing mode of the
editors.

REFERENCES

[1] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. 2014. Uniform access to NoSQL
systems. Information Systems 43 (2014), 117 - 133. https://doi.org/10.1016/j.is.
2013.05.002

F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose. 2003. Eclipse

Modeling Framework. Addison Wesley.

Subhasis Dasgupta, Kevin Coakley, and Amarnath Gupta. 2016. Analytics-driven

data ingestion and derivation in the AWESOME polystore. In 2016 IEEE Inter-

national Conference on Big Data (Big Data). 2555-2564. https://doi.org/10.1109/

BigData.2016.7840897

[4] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magda Balazinska, Bill
Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan Zdonik.
2015. The BigDAWG Polystore System. ACM SIGMOD Record 44, 2 (Aug. 2015),
11-16. https://doi.org/10.1145/2814710.2814713

[5] Mohammed El Mohajir and Amal Latrache. 2012. Unifying and incorporating
functional and non functional requirements in datawarehouse conceptual design.
In 2012 Collogquium in Information Science and Technology. 49-57. https://doi.
org/10.1109/CIST.2012.6388062 ISSN: 2327-1884.

[6] Luc Engelen and Mark van den Brand. 2010. Integrating textual and graphical
modelling languages. Electronic Notes in Theoretical Computer Science 253, 7
(2010), 105-120.

[7] Vijay Gadepally, Peinan Chen, Jennie Duggan, Aaron Elmore, Brandon Haynes,
Jeremy Kepner, Samuel Madden, Tim Mattson, and Michael Stonebraker. 2016.
The BigDAWG polystore system and architecture. In 2016 IEEE High Performance
Extreme Computing Conference (HPEC). 1-6. https://doi.org/10.1109/HPEC.2016.
7761636

[8] Felix Gessert, Florian Biicklers, and Norbert Ritter. 2014. Orestes: A scalable

Database-as-a-Service architecture for low latency. In 2014 IEEE 30th International

Conference on Data Engineering Workshops. 215-222. https://doi.org/10.1109/

ICDEW.2014.6818329 ISSN: null.

Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006. The epsilon

object language (EOL). In European Conference on Model Driven Architecture-

Foundations and Applications. Springer, 128-142.

Jiaheng Lu, Irena Holubova, and Bogdan Cautis. 2018. Multi-model databases

and tightly integrated polystores: Current practices, comparisons, and open

challenges. In Proceedings of the 27th ACM International Conference on Information

and Knowledge Management. 2301-2302.

[11] Sam Newman. 2015. Building microservices: designing fine-grained systems.

O’Reilly Media, Inc.".

Fa Rilston Silva Paim and Jaelson Castro. 2002. Enhancing Data Warehouse

Design with the NFR Framework. In Anais do WER02 - Workshop em Engenharia de

Requisitos, Valencia, Esparia, Novembro 11-12, 2002, Oscar Pastor and Juan Sanchez

Diaz (Eds.). 40-57. http://wer.inf.puc-rio.br/WERpapers/artigos/artigos WER02/

paim.pdf

Tushar Sharma, Marios Fragkoulis, Stamatia Rizou, Magiel Bruntink, and Dio-

midis Spinellis. 2018. Smelly relations: measuring and understanding database

schema quality. In Proceedings of the 40th International Conference on Software

Engineering: Software Engineering in Practice. ACM, 55-64.

Vasilis Spyropoulos, Christina Vasilakopoulou, and Yannis Kotidis. 2016. Digree: A

middleware for a graph databases polystore. In 2016 IEEE International Conference

on Big Data (Big Data). 2580-2589. https://doi.org/10.1109/BigData.2016.7840900

[2

B3

[9

[10

[12

(13

[14

https://doi.org/10.1016/j.is.2013.05.002
https://doi.org/10.1016/j.is.2013.05.002
https://doi.org/10.1109/BigData.2016.7840897
https://doi.org/10.1109/BigData.2016.7840897
https://doi.org/10.1145/2814710.2814713
https://doi.org/10.1109/CIST.2012.6388062
https://doi.org/10.1109/CIST.2012.6388062
https://doi.org/10.1109/HPEC.2016.7761636
https://doi.org/10.1109/HPEC.2016.7761636
https://doi.org/10.1109/ICDEW.2014.6818329
https://doi.org/10.1109/ICDEW.2014.6818329
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER02/paim.pdf
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER02/paim.pdf
https://doi.org/10.1109/BigData.2016.7840900

	Abstract
	Acknowledgments
	1 Introduction
	2 Background and Motivation
	2.1 Typhon H2020 EU project

	3 The TyphonML Environment
	3.1 Architecture
	3.2 Textual and Graphical Editors
	3.3 TyphonML validators and recommenders
	3.4 Generation of the Data Access Layer

	4 Conclusions
	References

